

Relationships that are always true for real numbers are called *properties*, which are rules used to rewrite and compare expressions.

Two algebraic expressions are **<u>equivalent expressions</u>** if they have the same value for all values of the variable(s). The following properties show expressions that are equivalent for all real numbers

ke note			
Properties Properties of Real Num	bers		
Draw a line from each property in Column A to the equation that illustrates it in Column B.			
Column A	Column B		
6. Associative Property of Addition	15y + 0 = 15y		
7. Associative Property of Multiplication	$7b \cdot 2 = 2 \cdot 7b$		
8. Commutative Property of Addition	$(c\cdot 3)\cdot 5=c\cdot (3\cdot 5)$		
9. Commutative Property of Multiplication	6x + 5y = 5y + 6x		
10. Identity Property of Addition	$a \cdot 1 = a$		
11. Identity Property of Multiplication	(g + 11h) + 9h = g + (11h + 9h)		
12. Multiplication Property of -1	$7k \cdot 0 = 0$		
13. Zero Property of Multiplication	$15m \cdot (-1) = -15m$		

PROBLEM 1: IDENTIFYING PROPERTIES

What property is illustrated by each statement?a). $42^{-9} = 0$ b). (y + 25) + 28 = y + (25 + 28)c). 10x + 0 = 10x

d).
$$4x \cdot 1 = 4x$$
 e). $x + (\sqrt{y} + z) = x + (z + \sqrt{y})$

PROBLEM 2: USING PROPERTIES FOR MENTAL CALCULATIONS

a) A movie ticket costs \$7.75. A drink costs \$2.40. Popcorn costs \$1.25. What is the total cost for a ticket, a drink, and popcorn? Use mental math.

 b) The sign at the right shows the costs for a deep=sea fishing trip. How much will the total cost be for 1 adult, 2 children, and 1 senior citizen to go on a fishing trip? Use mental math.

PROBLEM 3: WRITING EQUIVALENT EXPRESSIONS

Simplify each expression.

a)	5(3 <i>n</i>)	b). $(4+7b)+8$	c). $\frac{62}{3}$	ку V
.,	- ()		-,-	17

d) 2.1(4.5x) e).
$$6 + (4h + 3)$$
 f). $\frac{8m}{12mn}$

In problem 3, reasoning and properties were used to show that two expressions are equivalent. This is an example of *deductive reasoning*. **Deductive reasoning** is the process of reasoning logically from given facts to a conclusion.

To show that a statement is NOT true, find an example for which it is not true. *An example showing that a statement is false is a <u>counterexample.</u> You need only one counterexample to prove that a statement is false.*

Give a counterexample that proves each statement is false.

- a) If you live near an ocean, you live near the Atlantic Ocean.
- b) If you live in North America, you live in the United States.
- c) If you live in Miami, you live in Florida.

PROBLEM 4: USING DEDUCTIVE REASONING AND COUNTEREXAMPLES

Is the statement true or false? If it is false, give a counterexample.

a) For all real numbers a and b, $a \cdot b = b + a$

b) For all real numbers a, b, and c, (a + b) + c = b + (a + c)

c) For all real numbers j and k, $j \cdot k = (k + 0) \cdot j$

d) For all real numbers m and n, m(n + 1) = mn + 1

e) Is the statement in part a) false for every pair of real numbers a and b? Explain.

Lesson Check • Do you UNDERSTAND? Justify each step to show that $3 \cdot (10 \cdot 12) = 360$. 29. The left side of the expression is simplified below. Write a reason for each step. $3 \cdot (10 \cdot 12) = 3 \cdot (12 \cdot 10)$ $= (3 \cdot 12) \cdot 10$ $= 36 \cdot 10$ = 360

Math Success				
Check off the vocabulary words that you understand.				
Commutative Properties	ciative Properties Identity Properties			
equivalent expressions	deductive reasoning 📃 counterexample			
Rate how well you can use the properties of addition and multiplication.				
Need to review 0 2 4 6 8	10 Now I get it!			